CSE 566 - Fall 2004

Reconfigurable System On Chip Design

Lecture 9 : COREs : Logic Cores, Alliance Cores, and OpenCores.org

John W Lockwood

Washington University in St. Louis (includes material from Xilinx and OpenCores.org)

Lockwood@arl.wustl.edu

Copyright 2004

http://www.arl.wustl.edu/~lockwood/class/cse566-f04/

CSE 566 - F'04 - John W. Lockwood

Washington
University in St. Louis

1/2

Introduction to Cores

- A core is a ready-made function that you can instantiate into your design as a "black box"
- Cores can range in complexity
 - Simple arithmetic operators, such as adders, accumulators, and multipliers
 - System-level building blocks, including filters, transforms, and memories
 - Specialized functions, such as bus interfaces, controllers, and microprocessors
- Some cores can be customized with parameters

Benefits of Using Cores

- Save design time
 - Cores are created by expert designers who have indepth knowledge of Xilinx FPGA architecture
 - Guaranteed functionality saves time for system verification
- Increase design performance
 - Cores that contain mapping and placement information have predictable performance
 - The data sheet for each core provides performance expectations

<u>Logi CORE</u>

(Free)

CSE 566 - F'04 - John W. Lockwood

Washington University in St. Louis

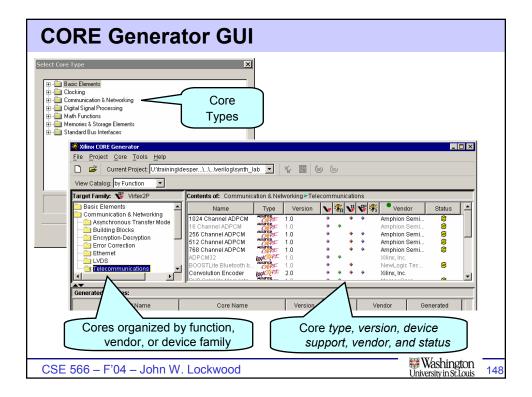
(Not Free)

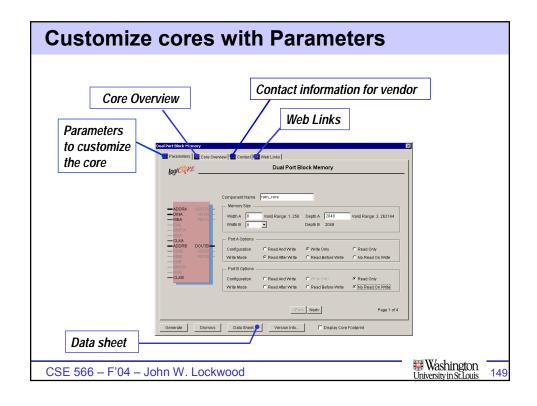
Available Cores

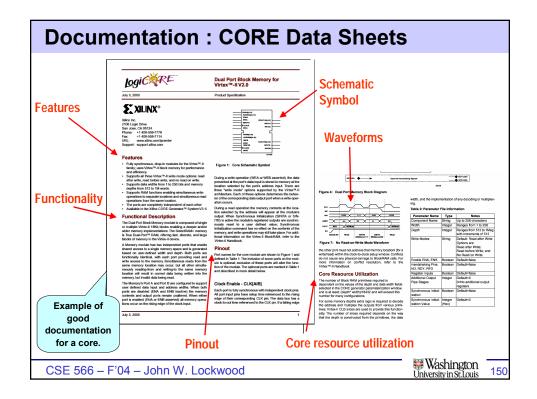
- LogiCORE™ solutions
 - DSP functions
 - · Time skew buffers, FIR filters, correlators
 - Math functions
 - · Accumulators, adders, multipliers, integrators, square root
 - Memories
 - Pipelined delay elements, single and dual-port RAM
 - Synchronous FIFOs
 - PCI master and slave interfaces, PCI bridge

- AllianceCORE™ solutions
 - Peripherals
 - · DMA controllers
 - Programmable interrupt controllers
 - UARTs
 - Communications and networking
 - ATM
 - Reed-Solomon encoders / decoders
 - T1 framers
 - Standard bus interfaces
 - PCMCIA, USB

Washington University in St. Louis


CORE Generator System


- Graphical User Interface (GUI) allows
 - Access to the cores themselves, with
 - Customizable parameters (available for some cores)
 - Data sheets
- Interfaces with design entry tools
 - Creates graphical symbols for schematic designs
 - Creates instantiation templates for HDL designs
- Web access from the Help menu
 - IP Center contains new cores to download and install
 - · Provides access to the latest cores
 - Direct access to
 - http://support.xilinx.com


CSE 566 - F'04 - John W. Lockwood

Washington University in St. Louis

47

HDL Design Flow for Core Generation and Integration

- Generate core and produce:
 - Instantiation template files (VHO or VEO)
 - Netlist file (EDN)
 - Behavioral simulation wrapper files (VHD or V)
- Instantiate the core into your HDL source
 - Template provided in the VEO or VHO file
- Wrapper files enable behavioral simulation
 - Analyze the wrapper file for each core before analyzing the file that instantiates the core
- Synthesize and implement using Netlist (EDN)

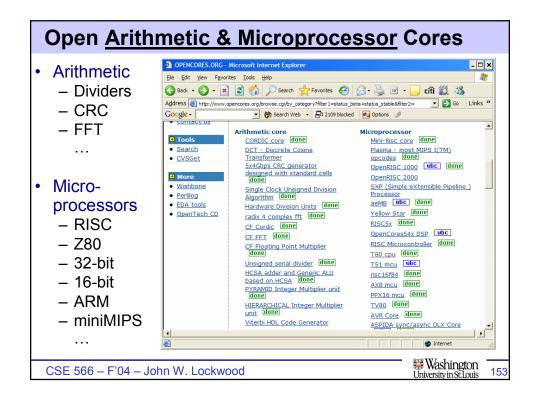
CSE 566 - F'04 - John W. Lockwood

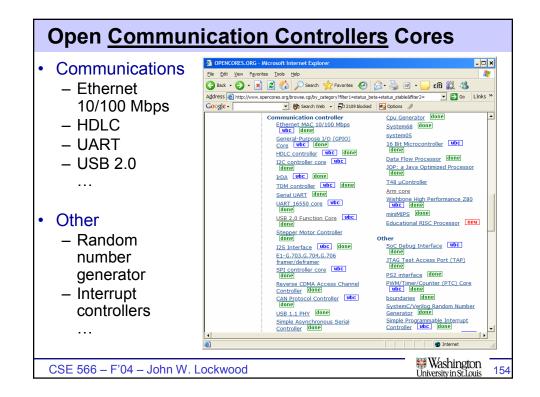
Washington University in St. Louis

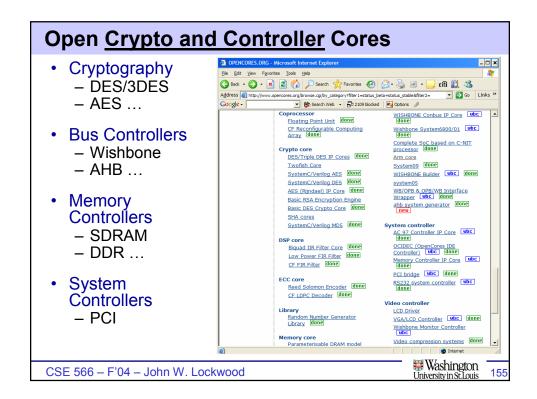
151

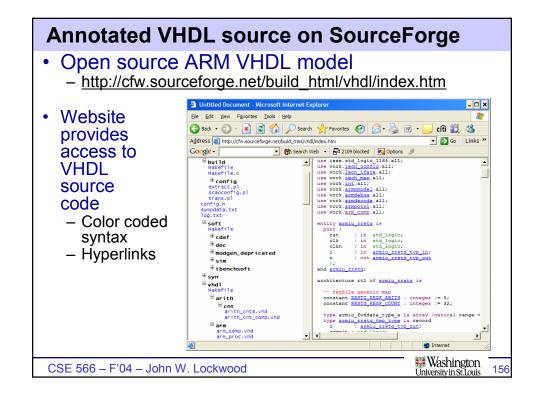
Open Cores Website

- OPENCORES.ORG
 - http://www.opencores.org/
 - Open souce cores in VHDL and Verilog source form
- Arithmetic
- Microprocessors
- Co-processors
- Communications
- Crypto
- DSP
- Memory
- AMBA bus


. . .




CSE 566 - F'04 - John W. Lockwood


Washington St. Lavis

152

Washington University FPX Cores

- Layered Internet Protocol Wrappers
 - Process packets directly in hardware at Gigabit/second rates
- TCP/IP Protocol processing wrappers
 - Process millions of traffic flows in hardware at Gigabit/second rates
- Bloom filters
 - Find thousands of strings anywhere in data
 - Find longest matching prefixes of packets
- FP-Grep & FP-Sed
 - Search for Regular Expressions with wildcards
- Internet Worm Detection
 - Find malware passing through a network
- · Switching and routing cores
 - Route traffic between FPGA components
- More information

http://www.arl.wustl.edu/arl/projects/fpx/reconfig.htm

CSE 566 - F'04 - John W. Lockwood

Washington University in St Louis

4--

License Requirements for Cores

- Commercial Cores
 - Integrators pay to use the core (per core or per copy)
 - Authors receive royalty for use of core
- BSD-style license
 - No warranty
 - May be distributed in binary or source form
 - Authors must be acknowledged
- GNU Public License (GPL)
 - All modifications must be distributed under the GPL
 - Cannot take away rights to access a modified version of core
 - If you use an item under GPL item, you MUST distribute all information about it and NOT prevent others from redistributing or modifying it.
- Washington University FPX cores
 - Free for non-commercial use (i.e., university research)
 - License required for commercial use (i.e., product sales)
- · Other licenses
 - Depend on the terms set by the author(s)